Server Telemetry

Insight into platform power & performance with Intel® Node Manager and PMBus® standard

March, 2018
So why does it matter? - observability hole

Platform Power Distribution

<table>
<thead>
<tr>
<th>No expanded telemetry</th>
<th>Platform Power Telemetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power [W]</td>
<td></td>
</tr>
<tr>
<td>Total (envelope)</td>
<td></td>
</tr>
<tr>
<td>Unidentified</td>
<td></td>
</tr>
<tr>
<td>CPU</td>
<td></td>
</tr>
<tr>
<td>MEM</td>
<td></td>
</tr>
</tbody>
</table>

Total (envelope)
PSU conversion
Unidentified
HDD
PCH/BMC
FAN
CPU
MEM

Grantley Power (Haswell-based CRB)

Can’t optimize what we can’t see
Server Board sensor map

PSU
- Device: PMBus PSU1
 - Address: 0xB0
- Device: PMBus PSU2
 - Address: 0xB2

LAN/PCH VR
- Device: LAN-Aux (4 channels)
 - Sensor: XRP7724
 - Address: 0x52
- Device: PCH (3 channels), BMC
 - Sensor: XRP7724
 - Address: 0x54

Auxiliary
- Device: IR3897 (Aux 5V)
 - Sensor: APE8901 (Aux 1V)
 - Sensor: APE8901 (Aux 1.8V)
- Device: IR3843 (I/O 1V)
 - Sensor: IR3876 (3.3V)
 - Sensor: APE8901 (Aux 1.5V)
- Device: IR3876 (5V)
 - Sensor: IR3550 (CPU)
 - Sensor: IR3537 (CPU)
- Device: IR3550 (MEM)
 - Sensor: IR3533 (MEM)
 - Sensor: LCMX0256 CPLD/FPGA

Sensor Map

CPU VR 12.5
- Device: CPU #0
 - Sensor: IR3566
 - Address: 0x8A
- Device: CPU #1
 - Sensor: IR3566
 - Address: 0x96

MEM VR 12.0
- Device: MEM #1
 - Sensor: IR3570
 - Address: 0x8E
- Device: MEM #2
 - Sensor: IR3570
 - Address: 0x92
- Device: MEM #3
 - Sensor: IR3570
 - Address: 0x9A
- Device: MEM #4
 - Sensor: IR3570
 - Address: 0x9E

FAN IMON
- Device: Sysfan 1&2
 - Sensor: INA219
 - Address: 0x80
- Device: Sysfan 3&4
 - Sensor: INA219
 - Address: 0x82
- Device: Sysfan 5&6
 - Sensor: INA219
 - Address: 0x88
Server Telemetry Using Intel® Node Manager

Power Telemetry
- Total platform power
- Individual CPU, Memory and Xeon Phi power domains

Thermal Telemetry
- Inlet & Outlet Airflow temperature
- Volumetric Airflow

Utilization Telemetry
- Aggregate Compute Utilization per sec
- CPU, Memory and I/O Utilization Metrics

Component Telemetry
- On-board telemetry devices monitoring
- Synchronously polled and stored into energy accumulators

Diagram Details
- Node Manager
 - Telemetry Hub
 - Reading Database
 - Reading Packages
 - CUPS Utilization
 - CPU
 - MEM
 - IIO
 - Power Domains
 - Total
 - CPU
 - MEM
 - IIO
 - Thermal & Volumetric
 - Outlet Temp
 - Inlet Temp
 - Airflow
- SMBus/I2C Proxy
- PECI Proxy
- BMC

Intel® Management Engine
- PMBus
- SMBus
- I2C
- MIC
- Device model specific registers
- Device model specific registers
- Device model specific registers

March 8, 2018
PMBus® and i²c/SMBus

PMBus® forms the basis of several platform power management standards used in the Computing industry.

Various types of sensors and devices from different vendors monitored on server board.
- Each SMBus/i²c device model has its own, unique set of commands
- Each requires custom, hard-coded support that drives validation and development costs
- Adopting a new device is costly, increases code size and risk

PMBus® standard:
- **AC/DC Server PSU PMBus® Profile (2008)** that defined PSU behavior and has been used for years (since 2007) and adopted by all major PSU vendors and Intel
- **Hot Swap Controller PMBus® Profile (2010)** used in servers unified how hot-swap controllers are produced and deployed
 - Unifies and standardizes the server environment
 - Profile support simplifies device capability identification and ensures compliance with set of requirements
PMBus® and i²c/SMBus

Single image of code instantiates on many varieties of platforms using device discovery protocol based on PMBus® Hot-Swap Controller Profile

Intel® Node Manager based on superset of potential board configurations dynamically discovers present device topology of the platform

This supports hot-plug, hot-removal of board components

Implements best-match algorithm for PMBus® devices using PMBus® DEVICE, MANUFACTURER, REVISION and a range of address

Configuration supports wild cards, e.g. any manufacturer, any device revision, etc.

Physical device is instantiated dynamically based on matching HSC template and result of discovery
Use cases for Telemetry

Cloud scheduling algorithms:
• Efficient workload placement
• Cooling optimization
• Building heatmap of Data Center
• Optimizing PUE

Improve observability of the platform board
• Maximizing rack density
• System sensor calibration and fine-tuning
• Run-time fault monitoring
• Power monitoring for peak, average power, etc.
Amount of telemetry points collected and processed is always increasing.

Telemetry is used to optimize and control workloads on Node-level, Rack-level and Data Center-level.

Node-level telemetry is aggregated using Telemetry Aggregators, e.g. Node Manager, BMC, Host Agent.

Orchestrator uses Redfish, RESTful API, to subscribe for telemetry.

Switch from polling to Publish/Subscribe model of delivering telemetry to Cloud Orchestrator.

Telemetry capabilities in external machine-readable schema file in XML, JSON.
End Message