Challenges and Solutions for Multi-Master / Multi-Slave PMBus Systems

Peter James Miller
Texas Instruments
APEC - 28 March 2017
What is a Multi-Master PMBus System?

• In SMBus a “Master” is any device that initiates a digital transmission
 – Drives the CLK through entire transmission
 – Drives DATA during Address and Command, may drive/read DATA during the data phase of a transmission
• Only 1 “Master” at a given time
 – A System “Host” for Telemetry
 – A Powered Device for AVS, Configuration
 – A System Host for Fault Management
Why do Multi-Master systems exist?

• System Host plus one or more powered devices using PMBus to actively control or monitor their power supply
 – Adaptive Voltage Scaling (AVS) through PMBUS (not AVSBus)
 – Adaptive Power
 • Scaling Operating Modes based on temperature, power, etc

• Multiple System Hosts
 – Separate Telemetry, Configuration and/or Fault Handling
 – External Interface with Internal Bus
Challenges of Multi-Master Systems – Slave Side

• Host Notify Protocol
 – Slave becomes a Master in response to a Fault

• Paged Devices
 – How does the Master know the “active” page?
 • Especially problematic when “Masters” may alternate
Challenges of Multi-Master Systems – Master Side

- **Master Side Challenges**
 - Transmission Collisions
 - SMBUS Bit-Arbitration
 - Coordinating Bus Traffic
 - Time Division Multiplexing, Defined Idle Delay, Shared Interrupt
 - Legacy Devices
 - May not support Multi-Master solutions
 - May not fully support bit arbitration
Challenges of Multi-Master Systems – System Side

• System Side Challenges
 – Bus Congestion
 – Repeated Collisions
Solutions to Multi-Master Systems – Slaves

• Paged Devices
 – Use `PAGE_PLUS_READ / PAGE_PLUS_WRITE`
 • Changes current page, so must be used on every command
 – Use devices that allow pages to be assigned unique Slave Addresses
 • Avoids using pages and the problems with pages

• Host Notify Protocol
 – Forces Multi-Master System
 – Slave device becomes Master during fault
Solutions to Multi-Master Systems – Masters

• Use 1 System Host as a Bridge
 – Avoid the Multi-Master system altogether
 • Host needs multiple communications ports
 • Adds delay to Communication Responses

• Determine who gets to talk next
 – Shared Interrupt uses 1 I/O from each powered device
 • Some powered devices may not support I/O control
 – Time Division Multiplexing – Everyone gets a turn
 – Programmable Idle Delay
 • Staggers start devices in start time
 • Idle delay sets bus priority
 • Matched Delays will default to Slave Address Arbitration
Resolving Conflicts

• Collision Resolution
 – I2C / SMBus Bit Arbitration
 – Bit Arbitration Loss
 • Reduced Idle time to grant Priority for next transmission
 • Random Idle time to prevent repeated collisions

• Interrupting In-Process Command
 – SMBus Time-Out = 25ms!
Thank you!
Questions?