The Circle of Life: Using PMBus from Start to Finish

Ramesh Balasubramaniam
Infineon
Product Marketing Director
APEC 2017, Tampa FL
March 26-30 2017
The Product Life Cycle

- Can PMBus optimize and assist with the Product Life Cycle Goals?
 - Improve design / verification time
 - Field operation & Update
 - Lifetime statistics
 - Total Cost of Ownership Reduction

- Let’s examine each step in detail ...
Design & Validation Cycle

- Let’s compare
 - Traditional (non Bus enabled) Power
 - PMBus enabled Power

![Design & Validation Cycle Diagram]
Schematic Phase: Analog v Digital Power

- Analog Power adds extra components for characterization & validation
- ASIC Vendors don’t provide Ref schematics with validation circuitry
 - Slows schematic design to aid Validation, Adds cost, space

<table>
<thead>
<tr>
<th>Schematic</th>
<th>Traditional Power</th>
<th>PMBus Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>1 Week</td>
<td>1 Day</td>
</tr>
<tr>
<td>PMBus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Debug Phase: Traditional Power

- **Why did it shut down??**
 - Debugging an Analog Power Supply is frustrating
 - Was it OCP, OVP, OTP ... ???

![Analog Power](image)
Debug Phase: PMBus Power

- **Software tools aid debug**
 - Read out fault status
 - Change Warning/Fault limits on the fly
 - Change fault behavior on the fly (shut-down, ignore, hiccup ...)

![Diagram of PMBus Power Debug Phase]
Optimization Phase

- Change Hardware components for Fsw, compensation ...
- Change parameters at the press of a button ...

Traditional Power

PMBus Power

<table>
<thead>
<tr>
<th>Rail Optimization</th>
<th>Traditional</th>
<th>1 Week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PMBus</td>
<td>1 Day</td>
</tr>
</tbody>
</table>
System Characterization Phase

- **Sequencing**
- **Margining**
 - Control voltage, slew rate, avoid Fault shutdown
- **Total Power Budget**

System Validation

<table>
<thead>
<tr>
<th></th>
<th>Traditional</th>
<th>1 Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMBus</td>
<td>5 Days</td>
<td></td>
</tr>
</tbody>
</table>
In Field Diagnostics & Updates

- Remote debug & Update (VR vendor → OEM)
- Customer Support (OEM → End Customer)

<table>
<thead>
<tr>
<th>Field Update</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>n/a</td>
</tr>
<tr>
<td>PMBus</td>
<td>✓</td>
</tr>
</tbody>
</table>
Lifetime Statistics

- Collect Data (e.g. use an additional NVM) for e.g. analysis of environment or optimization of future systems
 - Operational hours
 - Peak temperature
 - Peak current
 - Peak Voltage
 - Faults

<table>
<thead>
<tr>
<th>Field Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>n/a</td>
</tr>
<tr>
<td>PMBus</td>
<td>✓</td>
</tr>
</tbody>
</table>
Conclusion:
Time is Money – PMBus Delivers!

- Competitive Products exist (from Infineon & others) to build complete digital power systems
- Tools exist to accelerate the Design Cycle
- PMBus enables Faster Time To Market

<table>
<thead>
<tr>
<th></th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Design</td>
<td>6 wks</td>
</tr>
<tr>
<td>PMBus Design</td>
<td>1 wk</td>
</tr>
</tbody>
</table>